3D-stackable Crossbar Resistive Memory based on Field Assisted Superlinear Threshold (FAST) Selector

Sung Hyun Jo, Tanmay Kumar, Sundar Narayanan, Wei D. Lu and Hagop Nazarian

Crossbar Inc. 3200 Patrick Henry Dr. Suite 110, Santa Clara, CA 95054
Tel: (408) 884-0281, Fax: (408) 884-0283, Email: sung-hyun.jo@crossbar-inc.com

Abstract

We report the integration of 3D-stackable 1S1R passive crossbar RRAM arrays utilizing a Field Assisted Superlinear Threshold (FAST) selector. The sneak path issue in crossbar memory integration has been solved using the highest reported selectivity of 10^{10}. Excellent selector performance is presented such as extremely sharp switching slope of < $5 \mathrm{mV} /$ dec., selectivity of 10^{10}, sub-50ns operations, $>100 \mathrm{M}$ endurance and processing temperature less than $300^{\circ} \mathrm{C}$. Measurements on the 4 Mb 1 S 1 R crossbar array show that the sneak current is suppressed below 0.1 nA , while maintaining 10^{2} memory on/off ratio and $>10^{6}$ selectivity during cycling, enabling high density memory applications.

Introduction

For ultra-high density nonvolatile memory applications ($>1 \mathrm{~Tb}$), 3D-stackable 1 TnR or 1 S 1 R structures is needed. Suppressing the leakage (sneak) current in 1 TnR or 1 S 1 R crossbar arrays has been a main challenge for high density RRAM development. Various selector devices such as tunneling diode [1], bidirectional varistor [2], MIEC [3] and Ovonic threshold switch [4] have been proposed. Key requirements of selectors include high selectivity $\left(\Delta I @ V_{R}\right.$, $1 / 2 \mathrm{~V}_{\mathrm{R}}$), steep turn on slope, high current density, fast turn on and recovery and high endurance. Previous reported selector devices showed selectivity of $150 \sim 10^{5}$ and turn on slope of $60 \sim 450 \mathrm{mV} /$ Dec. In this work, we present a FAST selector with selectivity of $\sim 10^{10}$, turn on slope $<5 \mathrm{mV} / \mathrm{dec}$, fast turn on and recovery (<50ns). Furthermore, 4 Mb 1 S 1 R RRAM arrays are demonstrated with large memory on/off ratio and selectivity.

Selector Device

The FAST selector utilizes a superlinear threshold layer (STL) in which a conduction path is formed at the threshold

Fig. 1. I-V characteristics of FAST selectors ($100 \mathrm{~nm} \times 100 \mathrm{~nm}$). The device shows bidirectional threshold switching with larger than 10^{7} on/off ratio (test-limit).

Fig. 2. Zoomed-in plot showing the turn on slope of the FAST selector. The device showed extremely sharp turn on slope of less than $5 \mathrm{mV} / \mathrm{dec}$.

Fig. 3. The threshold voltages can be tuned by controlling the SLT layer thickness.

Fig. 4. Asymmetric threshold voltages can be achieved by modulating the device structure (by the modulation of electric field).
electric field. The device provides bidirectional volatile switching with large resistance ratio, high turn on current and steep turn on slope, as shown in Fig. 1. The measured selectivity for the $100 \mathrm{~nm} \times 100 \mathrm{~nm}$ device is $>10^{7}$, and is limited by the test setup. The switching slope is extremely sharp and is less than $5 \mathrm{mV} / \mathrm{dec}$. (Fig. 2), which is

Fig. 5. Threshold voltage $\left(\mathrm{V}_{\mathrm{TH}}\right)$ distribution of FAST selectors within a wafer. Target $\mathrm{V}_{\mathrm{TH}}: 0.6 \mathrm{~V}$.

Fig. 6. Reliable switching was still maintained in $15 \mathrm{~nm} \times 100 \mathrm{~nm}$ devices.

Fig. 7. Cycling test of FAST selectors. The selectors can be reliably cycled over 100 M cycles while maintaining $>10^{6}$ on/off ratio (test limited).
beneficial to array level operations (e.g. larger read voltage margin, faster read). The threshold voltages (V_{TH}) of the selector can be tuned by controlling either the STL thickness or device structure (Figs. 3-4). Fig. 5 shows good device uniformity and tight V_{TH} distribution. Reliable switching can be maintained in $15 \mathrm{~nm} \times 100 \mathrm{~nm}$ devices (Fig. 6) with current density $>5 \times 10^{6} \mathrm{~A} / \mathrm{cm}^{2}$. The selector can reliably switch over 100M cycles (Fig. 7). To test disturb at half-selected bias, a constant DC stress at $0.5 \mathrm{~V}_{\mathrm{TH}}$ was applied for a two hour-long period, which did not turn-on the device (Fig. 8). For voltage above V_{TH}, the switching speed is faster than 50 ns with the on-off transition time less than 5ns (Fig. 9). The device can quickly recover to the off state once the voltage is removed, with a recovery time $<50 \mathrm{~ns}$ (Fig. 10). Once a device switches

Fig. 8. DC stress test. The device did not turn-on at $0.5 \mathrm{~V}_{\mathrm{TH}}$ during two hourlong DC stress. Inset: DC switching characteristic.

Fig. 9. Switching speed of a FAST selector. (a) The selector can be turned-on within 30 ns in response to a 2 V pulse. (b) Zoomed-in figure of (a). Off-toon transition time is about 5 ns (tester limited) for over 300 uA of passing current through the selector.

Fig. 10. The selector quickly relaxes to the off state in less than 50 ns .
to the on-state, a much smaller hold voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$ is required to deliver a target current I_{P} (Fig. 11 (a)). V_{H} increases as I_{P} increases, but it was found to be independent of V_{TH} (Fig. 11 (b)-(d)). The small ($<0.3 \mathrm{~V}$ for 200 uA) V_{H} and very large offstate resistance minimize the voltage overhead when integrated with RRAM.

Array Integration

The FAST selectors have been integrated to a passive crossbar array (Fig. 12). Even for a 4 Mb crossbar array, the sneak current has been suppressed below 0.1 nA at both $25^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$, demonstrating very high device yield and low leakage current. We have also successfully integrated the FAST selectors with RRAM in passive crossbar 1S1R arrays.

Fig. 11. Hold voltage $\left(\mathrm{V}_{\mathrm{H}}\right)$ characteristics of FAST selectors. (a) Once a device switches on, a small V_{H} is required for passing a specific target current (passing current I_{P}). (b) I_{P} vs. V_{H}. (c) Median on resistances vs. I_{P}. (d) $V_{T H}$ vs. V_{H}.

Fig. 12. Passive crossbar array integration of FAST selectors (single cell to 4 Mb array). (a) Images of the fabricated selectors. (b) I-V characteristics of the integrated selectors (isolated single cell, cells in 100 Kb and 4 Mb arrays) at $25^{\circ} \mathrm{C}$. (c) $\mathrm{I}-\mathrm{V}$ at $125^{\circ} \mathrm{C}$.

Fig. 13. Passive crossbar integration of RRAM devices with FAST selectors. I-V characteristics of a single cell level (a) RRAM, (b) selector, and (c) integrated 1S1R device. (d) I-V characteristics of a 4 Mb passive crossbar array based on 1S1R.

For large array integration, we developed forming-free low current ($\leq 20 \mathrm{uA}$) RRAM cells (Fig. 13 (a)) to minimize IR drop and power consumption, and we designed selectors of which $\mathrm{V}_{\text {TH }}$ is larger than $0.5 \mathrm{~V}_{\text {PRG }}$ but smaller than $\mathrm{V}_{\text {PRG }}$ (Fig. 13 (b)) of the RRAM to suppress sneak currents during both the program and the read operations. The integrated 1S1R device shows $>10^{2}$ memory on/off ratio and $>10^{6}$ selectivity (Fig. 13 (c)). The device operations can be also maintained for the 4 Mb 1 S 1 R crossbar arrays (Fig. 13 (d)), which is the largest array size demonstrated to date in a passive crossbar structure. The integrated device can reliably switch more than

100 K cycles while maintaining the large memory on/off and selectivity (Fig. 14). To extract the intrinsic leakage current of an individual selector, leakage current through an entire 40 Kb selector array was measured (Fig. 15 (a)). The extracted selectivity is found to be 10^{10} (@100nm device). Fig. 15 (a) also shows that there is no single shorted selector device within the 40 Kb array. By using the same test method, we calculated the selectivity for different device areas (Fig. 15 (b)). Circuit simulations showed that the selectivity larger than 10^{5} is required to design Mb level passive crossbars (Fig. 16) and our FAST selectors surpass the requirement.

Fig. 14. Cycling demonstration of 1S1R devices. On, off states and half-selected currents are shown. The integrated 1S1R devices maintained $>10^{2}$ memory on/off ratio and $>10^{6}$ selectivity during the cycling.

Fig. 16. Practical passive crossbar sector size vs. selectivity. Assumed concurrent 2kb program with Icc max $=50 \mathrm{~mA}$.

Fig. 15. Leakage current test of selectors and the projected selectivity. (a) Leakage current through entire 40 Kb devices and projected 1 bit ($100 \mathrm{~nm} x 100 \mathrm{~nm}$) leakage current. Inset: Typical I-V of a selector on the same wafer. (b) The selectivity vs. device area based on the leakage current measurement.

Table 1. FAST selector summary

Key Parameters	Performance
Selectivity $\left(\Delta I @ \mathrm{~V}_{\mathrm{R}}, 1 / 2 \mathrm{~V}_{\mathrm{R}}\right)$	$\sim 10^{10}(@ 100 \mathrm{~nm})$ $\geq 10^{11}(@ 20 \mathrm{~nm}$, projected $)$
Endurance	$>10^{8}$
Voltage overhead (Hold voltage)	$<0.3 \mathrm{~V}$ for passing 200 uA
Switching slope	$<5 \mathrm{mV} / \mathrm{dec}$.
Max. current density	$>5 \times 10^{6} \mathrm{~A} / \mathrm{cm}^{2}$
Processing Temp.	$<300^{\circ} \mathrm{C}$

Conclusion

As summarized in Table 1, FAST selectors offer excellent performance metrics such as the largest reported selectivity $\left(10^{10}\right)$ to date, steep slope and fast turn on/recovery for high density memory applications. Functional 4 Mb passive crossbar RRAM arrays have been demonstrated based on the FAST selectors.

References

[1] A. Kawahara et al., IEEE ISSCC, 25.6, 2012
[2] W. Lee et al., VLSI Tech. Symp., 37-38, 2012
[3] K. Virwani et al., IEDM, 36-39, 2012
[4] S. Kim et al., VLSI Tech. Symp., T240-241, 2013

